

CDMS

CRYOGENIC DARK MATTER SEARCH

Advisor: Dr. Rupak Mahapatra

CDMS Team: Rusty Harris, Mark Platt, Joel Sander, Andrew Jastram, Jimmy Erikson, Kris Koch, Kunj Prasad

Austin Aguero Summer 2010 REU Texas A&M University Cyclotron Group

Presentation

Questions to Address:

- What is Dark Matter?
- Why do we Care?
- How do we Detect Dark Matter?
- What is A&M's Role?
- What was my Role?
- Conclusion

What is Dark Matter?

- Fritz Zwicky identified that galaxies tend to cluster by use of the first mountain top Schmidt Telescope
 - Photographs Galaxies Quickly
 - Virial Theorem
 - Rotational Motion
- Identification of "Unseen" mass
 - Gravitational Force was said to be incorrect if only visible matter is present.
 - Dark Matter Theory Proposed
- Zwicky mentioned the idea of dark matter, although the idea did not mean exactly what we do today.

What is Dark Matter?

Gravitational Effects on Visible Matter

Galactic Gravitational Force Plot

Why Do We Care?

The Estimates Today:

Dark Matter Compared to Known Matter:

Why Do We Care?

- Astronomers Seek out Answers to the Possible Beginning and End of the Universe.
- Particle Physicists Seek Out Further Knowledge of Particle Interactions.

A Couple of the Possible Approaches

MACHO'S

- Massive Astrophysical Compact Halo Object
 - Ordinary Matter
 - Composed of Quarks
 - Large Scale
 - Stars
 - Black Holes
 - Baryonic Matter

WIMP'S

- Weakly Interactive Massive Particle
 - Unordinary Matter
 - Small Scale
 - Subatomic Particles
 - Non-Baryonic Matter

How Do We Detect Dark Matter?

- A Few of the Many Experiments Designed to Investigate Dark Matter:
 - LUX Experiment:
 - Xenon
 - CoGeNT:
 - P-type point contact germanium detectors
 COUPP:
 - Bubble Chambers
 - CDMS:
 - Germanium and Silicon Detectors

CDMS

- Cryogenic Dark Matter Search
 - Approaches the Problem Using the Idea of WIMP Interactions
 - Uses Ge and Silicon Detectors
 - And Like All Dark Matter Experiments with a Focus on WIMP Interactions, CDMS is Designed to Exclude All Interactions, but those of WIMPS
 - A Series of Cuts are Used
 - Several Layers Of Shielding

CDMS Detector

 CDMS detector composed primarily of Ge and Si.
 4 Quadrant Detector

Electromagnetic Interactions vs Nuclear Recoils

Electromagnetic Interactions

Electromagnetic
 Interactions Occur
 Causing Equal Charge
 and Equal Photon
 Detection

Nuclear Reactions

 Nuclear Reactions Result in More Photon Detection and Less Charge Detection

- Possible Approaches To Obtain Acceptable Data
 - Shielding
 - Rejection

Shielding

Types of Shielding
 Climate Shielding
 Exterior Shielding
 Veto Cut

CDMS at Soudan (cdms.berkeley.edu/.../science/soudan.shtml)

- External Cuts
 - Cooling the System
 - Shielding of Different Types of Radiation
 - Lead, Poly, and a Half Mile of Solid Earth of Overhead, Shields the Detector Resulting in x50 000 Less Muons
 - Some Types of Shielding Such as Pb May in Turn be a Source of Events

Shielding

Veto Cut

- A muon may trigger a false event both inside and outside of the detector.
 - The Muon is Not the Cause of the Event, but Rather a if a Neutron is Freed and Collides with the Detector an Event is Said to Have Occurred
- Gamma Radiation may cause false events
- Incident Neutrons may cause false events
- The Veto Cut excludes these False Nuclear Interactions With the Detector

Backgrounds Cuts

- Background Particles
 - Distinguishing Between Nuclear Recoils and Electron Recoils
- Applying Cuts
 - Data Quality Cut
 - Q-Inner Cut
 - Q-Threshold Cut
 - Single Scatter Cut

- Data Quality Cut
 - Signals are Expected Within 10keV-100keV range
 - Above that Threshold is Considered Higher Energy Than That of Possible WIMPs
 - Only High Quality Events May be Considered as Possible Dark Matter Events

Q-Inner Cut

- Incoming ray triggers a possible event at a boundary, but nothing occurs on the inside
- Exclusion of the Corners and Edges

- Q-Threshold Cut
 - Have Readings Begin at a Particular Point to Avoid Noise
 - The Measurement of Any Signal Must be Several
 Sigma Above the Mean of The Noise
 - This Produces a Clear Phonon and Charge Signal
 Rather Than Being Interfered with Unwanted
 Background

Noise

- Noise Is Unavoidable
 - Instruments
 - Fitters
 - Electricity
- Compound Noise

Setting A Threshold

- Charge Threshold Cut
 - Set a threshold to avoid reading noise in as an event
 - Setting Threshold Problems
 - Setting the Threshold Too High Creates a
 Potential Loss of Signal,
 Because Possible Signals
 Are in turn Ignored
 - Setting the Threshold Too Low Creates a
 Potential loss of Signal, Because of Interference

Single Scatter Cut

- The Interaction of a Signal Amongst the Stacked Detectors
 Must Not Scatter
 Multiple Times
 WIMPs Will Not
 Scattor in Multiple
 - Scatter in Multiple Detectors While Backgrounds May

Energy Plot

Electron Recoils

 are
 Backgrounds

 Nuclear Recoils

 are Possible
 Events

Signal

- A Detector's Sensitivity to WIMPs is Proportional to the Product of the Detector Mass Times How Long the Detectors Look for WIMPs
- Detectors Are Already Running at Their Optimal Time Period. Detector Mass Must be Increased In Order to Maximize Signal Production
- This Has Been a Problem In the Past
 - Detectors Are 'Hand Crafted' in Time Intensive R&D Style Processes
 - Testing Detectors is a Time Strenuous Issue
 - Consistency is an Issue with 'Hand Crafted' Detector

Increasing Production

- Texas A&M University is Working on Increasing the Production Rate CDMS Detector by Industrializing the Method of Production Using Silicon Valley Production Techniques.
- The Mass Production of Detectors Increases the Sensitivity of the Experiment, and With Any Luck, the Success of the Experiment Along With It.

Increasing Consistency

- Improving the Reproducibility of Results of the CDMS Detector
- Take Over Stanford's Process
 - Allows Stanford To Pursue Theoretical Approaches to Bettering Their Detector

- Wet Lab
 - Dektak
 - Spin Coater
 - Contact Alignment
 - Etching Process

- Wet Lab
 - Dektak
 - Spin Coater
 - Contact Alignment
 - Etching Process

- Wet Lab
 - Dektak
 - Spin Coater
 - Contact Alignment
 - Etching Process

- Wet Lab
 - Dektak
 - Spin Coater
 - Contact Alignment
 - Etching Process

- Wet Lab
 - Dektak
 - Spin Coater
 - Contact Alignment
 - Etching Process

What Was My Role?

- In the Process of Commissioning a Second Laboratory My Role Has Become Very Broad Consisting of:
 - Sputtering System
 - Dektak
 - Ventilation
 - Spin Coater
 - Trouble Shooting
 - Equipment Installation

Conclusion

- CDMS is an Ongoing Experiment With Much to Look Forward to in the Future.
- Future of CDMS at Texas A&M:
 - Repair Sputtering System
 - Find Recipe To Match Desired Results
 - Possibly Introduce Oxygen
 - Possible Introduce Other Gas Components
 - Bring Online Polisher
 - Acquire More Space
 - Continue to bring online second laboratory:
 - Acquire and Install Spin Coater
 - Automate Oven Operation
 - Harness Contact Alignment Skill
 - Gain Further Knowledge of Etching Process
 - Continue on to Thicker Substrates.

Works Cited

Works Cited

cdms.berkeley.edu/.../science/soudan.shtml

Special Thanks

- Texas A&M University
- Cyclotron Institute
- Dr. Rupak Mahapatra
- Joel Sander
- Mark Platt
- And the Rest of The CDMS Team